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Motivation

 Nuclear reactor accident

- Hydrogen release in
containment

 Simulation tasks:
- Prediction of containment
atmosphere mixing

- Prediction of critical H
concentrations

- Pressure build-up




MiniPanda Test Facility

Ritterath, PSI (2011)



Geometry

« CAD geometry provided by Kelm et al. (2012)

Original Simplified




Mesh Information

 ANSYS ICEM CFD
- Structured hexahedral mesh

Vessell Vessel2
Elements 176,648 5,340,238
Nodes 184,603 4,039,603
Max. Aspect Ratio 59 834
Min. Grid Angle 37.3° 29.1°
Average y* (t = 1500 s) - 0.767




Mesh Information



Mesh Information: Vessel2

Injection Line EXxit

Vessel 2 Interconnecting Pipe




Mesh Information

Top view on plane z = 0.8 m

Injection Line




Initial Condition for He

XHe = XHe(2) \

T =T(z)

Vessel 1 Vessel 2



Boundary Conditions

—~—— Outlet
P=1atm

Walls /
No Slip

Tyau(t=0,2)

Inlet
mair(t)a Tair(t)

Vessel 1 Vessel 2



Boundary Condition @Inlet

MPIl_ 1 MPII_2 /\

mg, = 1.517 [g/s]

mgy;, = 0.683 [g/s]



Boundary Condition @ Inlet MPII_1

Tair (t)

MPII_2 has approximately the same inlet temperature  curve



CFD Simulation Setup

. URANS simulation

1800s real-time "H#S" %
- Multicomponent fluid mixture & # (#
He as the constraint material
- SST turbulence model )

- Buoyancy induced turbulence /

production & dissipation

- Kinematic diffusivity law
for Air-He mixture

e Time discretization:

2nd order backward Euler T x g
e Advection scheme: "% &# (#

HiRes / 2"d order upwind scheme
1st order for turbulence

 Timestep: D=0.01s,...,0.05s



CFD Simulation Setup

e Main aim & difficulty of MiniPanda simulations:

- Include all relevant physics
- Ensure required accuracy of the CFD simulation
(mesh & time resolution, convergence)

- Reduce computational time as much as possible

- Increase simulation time step as much as possiblef  ora
feasible advancement of the CFD simulation in real  -time

* Due to this aim separate investigations had been

carried out to determine:

Grid resolution

Residual targets (RMS vs. MAX)
Convergence criteria

Time step



Results MPII_1
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Results MPIl 1
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Results MPII_1
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Results MPII_1
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Results MPII_1

ANSYS CFX Experiment



Results MPIl_2
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Comparison MPIl_1/ MPIl_2

Temperature Temperature Vertical Velocity Eddy Viscosity Ratio
Experiment Simulation Simulation Simulation

t= MPII_1
500 [s]

MPII_2



Conclusion

o CFD results in good agreement with He data

- ANSYS CFD has the ability to predict the turbulent mixing

and transport of He in density- and temperature-driv. en
buoyant flows

- Good agreement between ANSYS CFX and ANSYS Fluent

- Physical modeling applicable to variation of MiniPanda test
conditions, i.e. variation of Re, Fr and Pe numbers

o Agreement with temperature data less satisfactory

- Uncertainties in experimental boundary conditions f or
Injected air temperature

- Uncertainties in thermal BC's for vessel walls
(heat capacity, heat flux)

better controlled experiment required
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