

CFD-Modeling of Boiling Processes

C. Lifante¹, T. Frank¹, A. Burns², E. Krepper³, R. Rzehak³ conxita.lifante@ansys.com ¹ANSYS Germany, ²ANSYS UK, ³HZDR

- Introduction
- Motivation
- Mathematical Formulation
- Wall Boiling model (RPI)
- Population Balance approach (MUSIG)
- Validation
- Roy et al. case
- DEBORA cases
- Summary & Outlook

ANSYS Introduction: R&D Consortium

Introduction: CFD Simulation for Fuel Assemblies in Nuclear Reactors

ANSYS Modelling of Sub-cooled Boiling at a Heated Wall

The RPI Wall Boiling Model:

- Constant pressure \rightarrow given T_{sat}
- Overall heat flux Q_w given
- Heat flux partitioning:

 $Q_w = Q_f + Q_e + Q_q$

- Q_f- single phase convection
- Q_e evaporation
- ${f Q}_{f q}$ quenching

(departure of a bubble from the heated surface \rightarrow cooling of the surface by fresh water)

ANSYS Wall Boiling Sub-models

The RPI model contains sub-models for:

- **Heat Flux Partitioning**
- **Bubble Dynamics**
- MPF Turbulence interaction ۲
- Interfacial heat and mass transfer •
- Coupled to CHT (1÷1, GGI)
- **Coupled to population banlance** Sub-models for nonequilibrium DNB and CHF
- Include convective turbulent • heat flux to vapor
- **Topological function for flow** regime transition

Heat Flux Partitioning:

- ✓ Convective turbulent liquid heat flux
- ✓ Quenching heat flux
- ✓ Evaporative heat flux
- ✓ Convective turbulent vapor heat flux, DNB+CHF

Bubble Dynamics:

- Nucleation site density
- > Bubble departure frequency
- > Bubble departure diameter
- > Area of bubble influence
- Coupled to MUSIG population balance model

Turbulence Interaction:

- Turbulent dispersion
- Bubble induced turbulence

Interfacial Heat and Mass Transfer:

- Condensation in the subcooled liquid
- Heat flux to vapour heat transfer
- > Wall vapour mass transfer
- Interfacial heat transfer / volume condensation

Flow Regime:

➢Flow regime transition from bubbly flow to droplets

ANSYS°

Flows with Subcooled Boiling (DNB) – RPI Wall Boiling Model

RPI wall boiling model available in ANSYS CFX and ANSYS Fluent

activated per boundary patch @ individual wall heat flux

Submodels:

- Nucleation site density: Lemmert & Chawla , User Defined
- Bubble departure diameter: Tolubinski & Kostanchuk, Unal, Fritz, User Defined
- Bubble detachment frequency: Terminal velocity over Departure Diameter, User Defined
- Bubble waiting time:
 - Proportional to Detachment Period, User Defined
- Quenching heat transfer: Del Valle & Kenning, User Defined
- Turbulent Wall Function for liquid convective heat transfer coefficient
- Mean bubble diameter Kurul & Podowski correlation via CCL/UDF or coupling to population balance model (homog. or inhomog. MUSIG model)
- Wall boiling & CHT in the solid (1:1 and GGI interfaces)
- 8 © 2011 ANSYS, Inc. August 9, 2013

ANSYS Investigated Boiling Validation Test Cases

• Bartolomei et al. (1967,1982)

• Bartolomei with recondensation

 OECD NEA PSBT subchannel benchmark (1987-1995, 2009)

• Lee et al. (ICONE-16, 2008)

ANSYS Investigated Boiling Validation Test Cases

 FRIGG-6a Test Case (Anglart & Nylund, 1967, 1996 & 1997)

• Roy et al. (2002)

Coupling Between Wall Boiling Modelling and Population Balance

• Size fraction equations derived from mass balance

$$\frac{\partial}{\partial t}(\rho_{i}r_{d}f_{i}) + \frac{\partial}{\partial x^{j}}(\rho_{i}r_{d}U_{i}^{j}f_{i}) = S_{B_{B}} - S_{D_{B}} + S_{B_{C}} - S_{D_{C}} + S_{i}$$
Mass transfer due to phase change extension
extension

• RPI wall heat partitioning

$$Q_{wall} = Q_{convl} + Q_{quench} + \dot{m}_{evap} h_{lg}$$

• At the heated walls one more source term is added to one size fract. Eq.

$$S_{W} \left[kg / m^{3}s \right] = \dot{m}_{evap} \left[kg / m^{2}s \right] \frac{S[m^{2}]}{V[m^{3}]}$$
 RPI: Evaporation rate

Coupling Between Wall Boiling Modelling and Population Balance

• Inhomogeneous MUSIG:

- \dot{m}_{evap} > Size fraction class 5
- \dot{m}_{evap} Mass conservation Gas 2
- Derived Source Terms → Momentum Gas 2

ANSYS Validation: RPI & homog. MUSIG

ANSYS Roy test case: Setup

Main setup parameters:

- Steady state
- High resolution advection scheme
- Turbulence model: SST
- Morel model for source terms in turb. eq.'s ($C_{\epsilon,3} = 1.0$)
- Turbulent dispersion (FAD) & drag force
 → Grace with correction coefficient -0.5
- Constant value for wall roughness
- Wall Contact Model: AF_{liquid} = 1; AF_{gas} = 0

$$k_r = \eta d_W \left(1 - \frac{Q_{convl} + Q_{quench}}{Q_{wall}} \right)^{\zeta} = 0.575 mm$$

Heat transfer correlation: Tomiyama

Main setup parameters:

- RPI model & bubble departure diameter: 1.3 mm
- Homogenous MUSIG model, 15 bubble classes
 - $d_{min} = 0.25 \text{ mm}, d_{max} = 3.75 \text{ mm}$
 - Prince/Blanch for coalescence ($F_c=4$); no breakup ($F_B=0$)
- For comparison: monodisperse simulation with Kurul & Podowski assumption on d_B=f(T_{Sub})=f(T_{Sat-}T_L)

ANSYS Spatial Grid Independence Analysis

• Spatial grid hierarchy:

	Mesh 1	Mesh 2	Mesh 3	Mesh 4
Radial cells	8	16	32	64
Axial cells	220	440	880	1760
Total Cells	1760	7040	28160	112640
γ^{+}_{max}	381	199	104	86

Mesh3	Single phase
y_{max}^+	34

R* dimensionless radius

$$R^* = \frac{R - R_i}{R_o - R_i}$$

Spatial Grid Independence Analysis

Analysis of Independence from Bubble Size Class Discretization

• Bubble size class discretization hierarchy:

	Discret. 1	Discret. 2	Discret. 3	Discret. 4
Number of classes	7	15	30	60
Diameter step [mm]	0.50	0.23	0.12	0.06

Analysis of Independence from Bubble Size Class Discretization

Analysis of Independence from Bubble Size Class Discretization

ANSYS Comparison to K&P Correlation

ANSYS Validation: RPI & Inhomog. MUSIG

- **DEBORA** test cases
- Scaling conditions:
 - **Density relation** Liquid/Gas
 - Reynolds Number
 - Weber Number
- Replacing water by R12
- More convenient experimental conditions:
 - Pressure
 - Temperature
 - Tube diameter
- Measurement of profiles becomes possible
- 23 © 2011 ANSYS, Inc. August 9, 2013

	Water	R12
Pressure [MPa]	15.7	2.6
Tsat [°C]	345	87
Density Liquid [kg/m ³]	590	1020
Density Gas [kg/m ³]	104	172
Viscosity [kg/ms]	6.8e-5	9.0e-5
Surface Tension [N/m]	4.5e-3	1,8e-3
D [m]	0.012	0.02
V [m/s]	5	2.3
DenLiquid/DenGas	5.6	5.9
Re	5.2e+5	5.2e+5
We	3.3e+3	3.3e+3

ANSYS Example: DEBORA Tests (CEA)

- Fluid Dichlorodifluoromethane = R12
- Heated tube D = 19.2 mm over 3.5 m
- Measurement of **profiles** for gas fraction, liquid and gas velocities, temperatures, bubble sizes
- Validation of
 - non drag forces
 - turbulent wall functions

ANSYS Application of Inhomog. MUSIG

- P = 1.49 MPa; G = 2000 kg m⁻² s⁻¹; Q = 75 kW m⁻²; $T_{SAT} T_{IN}$ = 13.9 K
- 2 disperse phases, 35 MUSIG size groups

2 dispersed gaseous phases, 10 &15 MUSIG size fractions

26 © 2011 ANSYS, Inc. August 9, 2013

CFD Simulation Results for Variation of Inlet Temperature T_{in}

- All tests were calculated with the same model parameters
- Shifting of void fraction maximum towards the core can be reproduced

ANSYS Summary & Outlook

- MUSIG-RPI coupling
 - Implemented in ANSYS CFX
 - Improves the accuracy of the simulations
 - Provides more detailed information about bubble size distribution
 - Shift of gas void fraction maximum from wall peak to core peak with increased inlet temperature
- Homog. model (here) & inhomog. (HZDR) were validated
- Open questions, further work necessary:
 - Bubble coalescence and fragmentation
 - Bubble induced turbulence

The work was funded by German Federal Ministry of Education and Research

Federal Ministry of Education and Research

Thank You!

