

120

PSBT - CFD Simulation of Subcooled Boiling in Heated Subchannel Geometry using ANSYS CFX 13.0

> Th. Frank, F. Reiterer, C. Lifante Fluids Validation Manager ANSYS Germany Thomas.Frank@ansys.com

Outline

PSBT, Phase I, Exercise 1:

- Testcase matrix
- CFD modeling
 - Eulerian Multiphase Flow
 - Wall boiling
 - Turbulence
- Followed CFD Best Practice

2

- Obtained results
- Conclusions & Outlook

ANSYS[®]

PSBT, Test Section S1 Geometry Horizontal plane (xy-plane)

• PSBT Phase I-1: ANSYS CFX 13.0

- Electrical heating of four ¼ pipes with 4.75 mm radius (imitating fuel rods)
- Modeling 1/4th of the geometry (1/8th symmetry)

Mesh Hierarchy

- Hexa meshing using ICEM/CFD Hexa 13.0
- Three consecutively refined levels of meshes
- Refinement by a factor of 2 in all directions
- Near wall zone of controlled mesh element thickness

MESHES:	Mesh 1	Mesh 2	Mesh 3
Size (xy × z resolution)	1160 x 155	4640x310	18560x620
Hexas	1.8*10 ⁵	1.4*10 ⁶	1.2*10 ⁷
Nodes	1.9*10 ⁵	1.5*10 ⁶	1.2*10 ⁷
Min. Angle [°]	42.6186	42.6217	42.6233
Min. Det.	0.890582	0.943188	0.971115
У ⁺ _{max}	~ 161	~81	~41

Mesh 1

Mesh 2

Mesh 3

Boundary Conditions (BC's)

Symmetry BC:

- Applied to the 2 inner boundaries of the subchannel segment Inlet BC:
- Mass flow rate and liquid temperature from PSBT
- Single phase pre-calculation on same geometry (L/D ~99)
 - Mesh 2, only liquid phase, isothermal, T_{liq}=T_{in}, different turbulence models
- Turbulence quantities of developed flow:
 - SST: k and Omega
 - EARSM: k and Epsilon
 - BSL RSM: Reynolds Stresses and Omega
- Correction factors to correct the integral mass flux @ Inlet
 - \rightarrow compensation of mesh discretization error

Boundary Conditions & Initialization

Outlet BC:

- Pressure @ Inlet as specified in PSBT database was used as averaged static pressure @ Outlet
- Neglected contribution of hydrostatics in comparison to total pressure level

Wall BC:

- Prescribed const. wall heat flux (q_{wall}) on heater surface
- all other walls \rightarrow adiabatic walls

Initialization:

- Pressure @ Domain = p_{ref} (= Pressure @ Outlet)
- u/v/w @ Domain = u/v/w @ Inlet
- Turbulence Quantities are equal to Inlet BC's
- Temperature @ Domain = Temperature @ Inlet = T_{in}
- Steam VF @ Domain = 0

CFD Model Setup

- Eulerian MPF framework, 2-phase flow
- Blending of IAC for higher steam volume fraction
- Turb. model in continuous phase + 0-eq. disp. phase turb. model + Sato bubble induced turbulence
- Continuous phase enthalpy eq.
 - + vapour phase set to saturation temperature (IAPWS-IF97)

	SST_TD	SST_ND	EARSM_ND
Turbulence model	SST	SST	EARSM
Drag force	Grace	Grace	Grace
Turb. dispersion force	FAD TD force	FAD TD force	FAD TD force
Lift force	-	Tomiyama	Tomiyama
Wall lubrication force	-	Antal	Antal

Turbulence Model Variation

- SST vs. EARSM
- SST isotropic turbulence assumption
- EARSM can predict for anisotropic turbulence and recirculating flows
- cross-sectional recirculation contributes to thermal mixing and redistribution of vapour on heater surface
 → model uncertainty

Flows with Subcooled Boiling (DNB) – RPI-Wall Boiling Model

Mechanistic wall heat partioning model:

RPI-Wall Boiling Model – Submodels for Model Closure

Submodels for closure of RPI wall boiling model:

- Nucleation site density: Lemmert & Chawla
- Bubble departure diameter: Tolubinski & Kostanchuk
- Bubble detachment frequency:
 - Terminal rise velocity over Departure Diameter
- Bubble waiting time:
 - Proportional to Detachment Period
- Quenching heat transfer: Del Valle & Kenning
- Turbulent Wall Function for liquid convective heat transfer coefficient
- Correlation for bulk flow mean bubble diameter required:
 - → smoothed Kurul & Podowski correlation via CCL
 - → assumed near wall bubble diameter $d_{b,max}$ =0.65mm (consistent d_{B} value near wall with bubble departure diameter)

CFD Best Practice

Addressed CFD Best Practice:

- Selected case 1.2211 for CFD BPG analysis
- Baseline setup SST_TD used for these ivestigations
- Investigation of required convergence level
- Investigation of integral balances
- Steady-state vs. transient flow behavior (transient behavior found for cases: 1.3221, 1.4121, 1.4122, 1.4325, 1.4326)
- Investigation of mesh independency

CFD Best Practice - CFD Solver Convergence Level -

 Comparison of integral values in dependence on prescribed convergence level:

	MAX RES 10 ⁻³	MAX RES 10 ⁻⁴	MAX RES 10 ⁻⁵
Iteration Nr.	377	456	502
r _v @ Domain	0.035568	0.036551	0.036575
p @ Inlet [Pa]	15038339	15038300	15038297
r _v @ Plane 1	0.099402	0.103239	0.103297
T _{Water} @ Plane 1 [K]	608.3125	608.5684	608.5726

→ Continued investigations with N_{Iter}~500 and convergence criterion set to Max RES=10⁻⁴

CFD Best Practice - Mesh Independence -

 Comparison of integral values in dependence on mesh resolution:

	Mesh 1	Mesh 2	Mesh 3
r _v @ Domain	0.036577	0.036847	0.036890
p @ Inlet [Pa]	15038297	15037081	15036333
m @ Inlet [kg m ⁻² s ⁻¹]	3027.58671	3027.75835	3027.81763
r _v @ Plane 1	0.103303	0.101383	0.099270
T _{Water} @ Plane 1 [K]	608.5729	608.2116	607.6549

→ Continued investigations on Mesh 2 as a good compromise between accuracy and comp. effort

CFD Solver Results: 1.2211, Mesh 1

NSYS[®]

CFD Solver Results: 1.2211, Mesh 2

CFD Solver Results: 1.2211, Mesh 3

CFD Solver Results: 1.2211, Heater – Mesh 1

CFD Solver Results: 1.2211, Heater – Mesh 2

CFD Solver Results: 1.2211, Heater – Mesh 3

Final PSBT Benchmark Results

Testcase Parameter Variation

• Studied testcase conditions (mandatory testcases):

Testcase	Pressure	Inlet Temp.	Power	Mass Flux	r _v (meas.)
1.2211	150 bar	295.4 °C	1.93 MW m ⁻²	3031 kg m ⁻² s ⁻¹	0.038
1.2223	150 bar	319.6 °C	1.50 MW m ⁻²	3031 kg m ⁻² s ⁻¹	0.311
1.2237	150 bar	329.6 °C	1.29 MW m ⁻²	3031 kg m ⁻² s ⁻¹	0.440
1.4325	100 bar	253.8 °C	1.29 MW m ⁻²	1389 kg m ⁻² s ⁻¹	0.335
1.4326	100 bar	268.8 °C	1.30 MW m ⁻²	1389 kg m ⁻² s ⁻¹	0.531

 CFD simulations carried out on Mesh 1 & Mesh 2 (1.2211 additionally on Mesh 3)

Testcase Parameter Variation

Additionally studied testcases:

Testcase	Pressure	Inlet Temp.	Power	Mass Flux	r _v (meas.)
1.3221	125 bar	294.4 °C	1.29 MW m ⁻²	3083 kg m ⁻² s ⁻¹	0.053
1.3222	125 bar	309.5 °C	1.29 MW m ⁻²	3028 kg m ⁻² s ⁻¹	0.357
1.3223	125 bar	319.7 °C	1.30 MW m ⁻²	3083 kg m ⁻² s ⁻¹	0.546
1.4121	100 bar	274.1 °C	1.51 MW m ⁻²	3056 kg m ⁻² s ⁻¹	0.097
1.4122	100 bar	304.5 °C	1.50 MW m ⁻²	3028 kg m ⁻² s ⁻¹	0.636

- Different system pressure
- Systematic variation in liquid subcooling @ inlet
- CFD simulations carried out on Mesh 1 & Mesh 2

CFD Solver Results Steam VF vs. Data

CFD Solver Results Thermal Equilibrium Quality vs. Data

Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR

ANSYS[®]

Modeling, Simulation & Experiments for Boiling Processes in Fuel Assemblies of PWR

 Ultrafast electron beam X-ray CT (ROFEX) of heated rod bundle in titanium pipe on TOPFLOW @ FZD:

Images by courtesy of U. Hampel, F. Fischer, FZD

Modeling, Simulation & Experiments for **Boiling Processes in Fuel Assemblies of PWR**

outlet

Coupling of RPI wall boiling and MUSIG model

- Experiment by Roy et al. (2002)
- Boiling of R-113 in circular heated annulus

Coupling of RPI Wall Boiling & MUSIG Model in ANSYS CFX

Conclusions & Outlook

- In general good agreement to data obtained:
 - Broad range of test conditions investigated
 - Trends are correctly covered by ANSYS CFX
 - CFD predicts higher steam VF for low volume fraction cases
 - More difficult convergence for large liquid subcooling
- Improvement of CFD modeling:
 - Uncertainty in MPF turbulence modeling and in MPF flow regime transition modeling (for large steam VF cases)
 - Uncertainty in interfacial momentum transfer modeling close to the heated surface (violation of model assumptions)
 - Provided PSBT data not very suitable for CFD model advancements
- →HZDR boiling and HiRes tomography experiments

→Flow morphology transition, RPI & MUSIG/DQMOM coupling, DNB and CHF model in ANSYS Fluent,...

PSBT Phase I, Exercise 2

NSYS[®]

- Created CAD model of rod bundle B5 in ANSYS Design Modeler 13.0
 - Simple spacer
 - Non mixing vane spacer
 - Mixing vane spacer

PSBT Phase I, Exercise 2

Media

- 120.000 cut-cell mesh for NMV spacer
- Realizing similar resolution as for exercise 1
- → min. 216 million elements for whole bundle (and still rather coarse)

- Central channel + surrounding quarter rods
- \rightarrow 45 million elements

39

PSBT Phase I, Exercise 2

- For CFD the PSBT Phase I, Exercise 2 is more of a meshing benchmark than a multiphase flow modeling benchmark
- Massive HPC resources would be required to compute the benchmark for just a single test condition
 → ... and then to compare to <u>3 real numbers</u>
- OECD IBP-2 benchmark based on KAERI MATIS-H experiments are better suited to compare CFD with field measurement data for velocity fields upstream of grid spacers

 \rightarrow higher benefit for CFD modeling advancement

Acknowledgements

 This research has been supported by the German Ministry of Education and Research (BMBF, Grant No. 02NUK010G) in the framework of the R&D funding concept of BMBF "Basic Research Energy 2020+"

SPONSORED BY THE

Federal Ministry of Education and Research

