

2009 ESSS South American ANSYS Users Conference November, 10-13, 2009 Florianópolis, SC - Brazil

Test cases for variable density flow

Paulo Santochi Pereira da Silva - psantochi@hotmail.com

Daniel Koester - daniel.koester@ansys.com

Yuri Egorov – <u>yuri.egorov@ansys.com</u>

Thomas Frank – thomas.frank@ansys.com

Motivation

- Variable density flow modeling is challenging and not well understood
- Important for many industrial flows:
 - Reactor Safety
 - Chimney Plumes
 - Internal Combustion Engines
 - High Mach Number Flows
- To better understand the effects of variable density on flows, simple test cases where selected in order to test several aspects of these flows individually

Test cases

- In this presentation:
 - Saline Mixing Layer: different density fluids
 - Differenced Heated Cavity: density variation due to heating
- The densities differences involved in both test cases are not large
- In both test cases the flow has large buoyant effects

Saline Mixing Layer

• Fluids:

INSYS

- Fresh water: $\rho_1 = 1015 \, [kg/m^3]$
- Salt water: $\rho_2 = 1030 \, [kg/m^3]$
- Mixture Kinematic Diffusivity:1e-9 [m²/s]

2009 ESSS South American ANSYS Users Conference

- Inlet average velocities:
 - Fresh water inlet: $U_1 = 0.52 [m/s]$
 - Salt water inlet: $U_2 = 0.32$ [m/s]

Experiment made by Uittenbogaard [1995]

Mesh

- Coarse Mesh (Grid01):

 Mesh suggested by
 Uittenbogaard [1989]
 8160 hexahedrical
 elements

 Fine mesh (Grid02):

 Refined by a factor of 2 in
 - each direction from Grid01
 - 32640 hexahedrical elements

Numerical Model

- CFX 12.0 version used for simulations
- 2D Flow
- Stationary Simulation
- High Resolution advection scheme
- First order turbulence Numeric's
- Automatic Time step (0.3 seconds on both meshes)
- Full Buoyancy model
- Convergence Criteria:
 - 1e-5 RMS residuals

Numerical Model

- Turbulence Models
 - SST
 - SST with buoyancy production for k (SSTbuopro)
 - K-Epsilon
 - K-Epsilon with buoyancy production for k (KEpsbuopro)

Mesh comparison

Mesh comparison

Mesh comparison

Model Comparison - Salt Water Mass Fraction at the outlet

Model Comparison - Salt Water Mass Fraction at the outlet

Conclusions

- Mesh convergence was achieved (curves overlap)
- It is necessary to switch buoyancy turbulence on to match experimental results
- In the measurements made at 40 m from the inlet, the experimental values might be shifted because the experiment was conducted in an open channel leading to an inconstant free surface height

Description

ANSYS Experiment made by Cheesewright et al [1986] Cavity containing air • Equation of state: $\rho = \frac{\rho_{ref} T_{ref}}{T}$ Cold Wall Hot Wall •T_{hot} = T_{Ref} + 0.5 ΔT= 74.4 [°C] 5 m • T_{cold} = T_{Ref} - 0.5 ΔT= 28.6 [°C] Where: -T_{ref} = 51.5 [ºC] - ΔT = 45.8 [ºC] $-P_{ref} = 1 [atm]$ $-\rho_{ref} = \frac{P_{ref}.M}{T_{ref}.R}$ 1.000 (m 0.500

Mesh

*Average y⁺ values

Coarse Mesh figures

Numerical Model

- CFX 12.0 version used for simulations
- Stationary Simulation
- High Resolution advection scheme
- First order turbulence Numeric's
- Full Buoyancy Model
- Convergence Criteria:
 - 1e-5 MAX residuals
 - 1e-5 conservation target for the energy equation
 - 0.01 conservation target for other equations

Numerical Model

- Turbulence:
 - BSL
 - K Omega
 - Reynolds Stress BSL
 - K Epsilon
 - Reynolds Stress SSG

Automatic Wall function

Scalable Wall function

- Stationary simulation
- Pseudo time step:
 - Automatic time step (0.7 seconds for both meshes)

Profiles Locations

Mesh Comparison

Mesh Comparison

Where Uc is the convection velocity calculated as:

$$U_c = \sqrt{g.Width.\beta.\Delta T}$$

Where β is the thermal expansion coefficient

Where Uc is the convection velocity calculated as:

$$U_c = \sqrt{g.Width.\beta}.\Delta T$$

Where β is the thermal expansion coefficient

Conclusions

- Mesh convergence was achieved
- Omega based models in CFX resolve viscous sub-layer and therefore provide better prediction of the flow
- Omega based models correctly predict Nusselt numbers (turbulent heat flux normal to wall is correctly predicted)
- For all models the turbulent heat flux in the Y direction (TpVp) is greatly under predicted due to the turbulent Prandtl number approximation

References

- Uittenbogaard, R.E. [1989] Stably Stratified Mixing Layer. Data Report for the 14th meeting of the IAHR Working Group on Refined Flow Modelling
- Uittenbogaard, R.E. [1995] The Importance of Internal Waves for Mixing in a Stratified Estuarine Tidal Flow
- R.Cheesewright, K.J.King and S.Ziai [1986] Experimental data for the validation of the computer codes for the prediction of two-dimensional buoyant cavity flows, Proc. ASME Meeting, HTD, Vol. 60, pp. 75-81.
- S.K. Choi, E.K. Kim and S.O. Kim [2003] Evaluation of two different kepsilon-vv-f turbulence models for natural convection in a rectangular cavity

