

Extension and Validation of the CFX Cavitation Model for Sheet and Tip Vortex Cavitation on Hydrofoils

C. Lifante, T. Frank, M. Kuntz ANSYS Germany, 83624 Otterfing Conxita.Lifante@ansys.com

Overview

- Introduction
- Cavitation project
 - Goals
 - Cavitation model
 - Testcases
- Results
 - Testcase set-up
 - Validation studies
- Summary

Cavitation on Pumps, Propellers & Hydrofoils

- Cavitation phenomena
- Propeller
 - Tip vortex cavitation
- Hydrofoil
 - Sheet & cloud cavitation

Cavitation Project

- Title
 - Investigation of higher order pressure fluctuations and its influence on ship stern, taking into account cavitation at propeller blades
- Project partners
 - SVA Potsdam, ANSYS Germany
- Duration
 - July 2005 to June 2008
- Funded by German Ministry of Education and Research (BMBF)
- Main issues
 - CFD & experiments for ship propeller cavitation
 - Cavitation including transient effects
 - Cavitation induced pressure fluctuations and interaction with ship stern

Cavitation Model-Rayleigh-Plesset Equation

Interfacial mass transfer

$$\Gamma_{\rm lv} = \dot{m}_{\rm lv} A_{\rm lv}$$

$$\dot{m}_{1v} = \frac{dm_{v}}{dt} = \rho_{v} \frac{dR}{dt}$$

$$\frac{\mathrm{dR}}{\mathrm{dt}} = \sqrt{\frac{2}{3} \frac{\mathrm{P_v} - \mathrm{P}}{\mathrm{\rho_1}}}$$

Cavitation Model-Rayleigh-Plesset Equation

$$\Gamma_{1v} = F_{vap} \frac{3\alpha_{nuc} \left(1 - \alpha_{v}\right)}{R} \rho_{v} \sqrt{\frac{2}{3}} \frac{P_{v} - P}{\rho_{1}} \quad \text{if } P < P_{v}$$

$$\Gamma_{v1} = -F_{con} \frac{3\alpha_{v}}{R} \rho_{v} \sqrt{\frac{2}{3}} \frac{P - P_{v}}{\rho_{1}} \quad \text{if } P > P_{v}$$

 Modified interfacial area density for vapourisation

•
$$F_{vap} = 50, F_{con} = 0.01$$

• $\alpha_{nuc} = 5 \times 10^{-4}$

Turbulent Pressure Fluctuations

Pressure fluctuations in the (U)RANS equations:

$$P = \overline{P} + p'$$

Where

$$\tilde{p} = \sqrt{p^{\prime 2}} \sim CAV_{coef} \rho(1 - \alpha_{v})k = \frac{1}{2}CAV_{coef} \rho(1 - \alpha_{v})(\overline{u^{\prime 2}} + \overline{v^{\prime 2}} + \overline{w^{\prime 2}})$$

Therefore:

$$\frac{dR}{dt} = \sqrt{\frac{2(P_v - \overline{P} - \tilde{p})}{3\rho_l}}$$

$$CAV_{coef} = 0.39$$

Le: 2D profile

CFX#

Le Profile

- Measurements of Le et al. (1993) & Franc (2001)
 - Two-dimensional profile
 - Different cavitation phenomena

σ=	$P_{\infty} - P_{\nu}$
	$\overline{0.5\rho v_{\infty}^2}$

- Inlet: Specified velocity (from Reynolds number)
- Walls: Free slip
- Outlet: Static pressure for entrainment

Meshing: Grid Hierarchy

- ICEM CFD HEXA
 - Geometry rotation for different angle of attack
- 2d refinement between grids by scale factor 2×2

Grid	Coarse(2)	Medium(3)	Fine(4)
Number of nodes	56,452	224,264	893,986
Number of elements	27,840	111,360	445,440
Minimum grid angle	41 °	38 °	43 °
First layer distance y [µm]	10	5	2.5
Average <i>y</i> ≁	4	2	1

Validation: Cavitation Length

© 2006 ANSYS, Inc. All rights reserved.

12

Validation: Cavitation Length

• Transient simulation , $\alpha = 4^{\circ}$, $\sigma = 0.5$

Validation: Pressure Distribution

- Pressure coefficient distribution on foil upper side
- Angle of attack: α =2.5° and α =3.5°

Transient simulations, time averaged data

Validation: Pressure Distribution

- Pressure coefficient distribution on foil upper side
- Angle of attack: $\alpha = 3.5^{\circ}$, $\sigma = 0.55$

Transient simulations, time averaged data

Arndt Profile

• Measurements by Arndt, R.E.A. and Dugue (1992)

Set-up: Boundary Conditions

Inlet

- Computed from Re number
- Outlet
 - Static pressure for entrainment
- Walls
 - No slip

Meshing: Topology

- ICEM CFD structured meshes
 - C-Grid type grid around foil surface
 - Quarter O-Grid between C and O-Block connection at blade tip

Meshing: Grid Hierarchy

- Boundary layer resolution
 - Relation of first cell spacing to y⁺ value

$$\Delta y = L\sqrt{80} \operatorname{Re}_{L}^{-13/14} \Delta y^{+}$$

• Scaling factor between grids ~ $\sqrt[3]{4} \times \sqrt[3]{4} \times \sqrt[3]{4}$

Grid	Coarse (1)	Medium (2)	Fine (3)
Number of nodes	358,519	1,394,862	5,442,459
Number of elements	341,596	1,352,603	5,337,217
Minimum grid angle	21 °	21 °	21 °
First layer distance y [µm]	30	15	7.5
Average <i>y</i> ⁺	14.3	7.1	3.6

Set-up: Physical Models

- Spatial discretization
 - High Resolution for hydrodynamic system
 - Upwind / High Resolution for *k*-ω equations
- Time integration
 - 2nd order Backward Euler
- Two-phase flow
 - Water, water vapour
- Mass transfer
 - Rayleigh-Plesset cavitation model
- Turbulence
 - SST, SST with Curvature Correction, BSL-RSM

Validation: Lift Curve

- Lift coefficients vs. Effective angle of attack (α - α_0)
- Experiments: Re_c=9.2×10⁵, Simulation: various Re_c

Validation: Tip Vortex Velocity

Measurement planes

 Evaluation of vortex velocity at plane perpendicular to flow at x/c=0.5, 1.0, 2.0 behind hydrofoil

© 2006 ANSYS, Inc. All rights reserved.

ANSYS, Inc. Proprietary

Validation: Tip Vortex Velocity

Turbulence model variation:

- Standard SST model
- Spatial discretization
 - High Resolution for all equations except turbulence
 - High Resolution for all equations
- Curvature correction
 - Turbulence strongly affected by swirl and streamline curvature
 - Effects are not accounted for in standard 2-equation model
 - Additional terms in SST turbulence equations
- BSL-RSM model
 - One equation for each stress tensor component

Validation: Tip Vortex Velocity

Tip Vortex Vapour volume fraction

- Medium grid
- Re=5.2x10⁵
- α_{eff}=12°, σ=0.58
 - Water at 25 C.Velocity (alpha 12 deg) $[m\ s^{-1}]$

© 2006 ANSYS, Inc. All rights reserved.

Validation: Cavitation Inception

- Arndt & Dugue (1992), Arndt et al. (1991) \Rightarrow
 - Cavitation inception vs. lift, correlation for model scaling: $\sigma_i \propto 0.063 c_i^2 \text{ Re}^{0.4}$

Summary

- SVA Potsdam & ANSYS Germany cavitation project (BMBF)
- ANSYS CFX cavitation model
- Validation test cases for hydrofoil cavitation:
 - Le et al. \rightarrow 2d hydrofoil cavitation
 - Arndt et al. \rightarrow tip vortex cavitation
- Work in progress
 - Isolated propeller P1356
 - Non condensible gas cavitation
 - Ship propeller with ship stern.
 - Rotor-Stator interface
 - Influence of the turbulence model

