

1

Particle-Particle Collision Model for Dispersed Gas-Particle Flows: Implementation and Validation

Björn Hussmann, Prof. Michael Pfitzner

Thermodynamics Institute University of the Federal Armed Forces Munich

Thomas Esch, Thomas Frank

ANSYS Germany

June 27th, 2006

Universität

Outline

- Introduction modelling of dispersed gas-solid flows
- Stochastic particle-particle collision model overview
- Algorithm of the collision model
- Validation of the collision model
 - Test case description
 - Comparison with experimental results
- Summary and advisable extensions

Modelling of highly loaded dispersed gas-particle flows

- Two common techniques for dispersed gas-solid flows:
 - Euler-Euler
 - Euler-Lagrange
- Euler-Lagrange model is suitable only for dilute flows
 - two-way coupling
- For highly loaded gas-solid flows, four-way coupling is essential
 - interaction gas \leftrightarrow particle
 - momentum transfer between particles \rightarrow collisions
 - realisation by the presented model

Modelling of dispersed gas-particle flows

Stochastic particle-particle collision model

- Sequential trajectory calculation
- Presence of neighbouring particles is taken into account
- Creation of a virtual collision partner according to local statistical mean
 particle properties
- Calculation of a collision probability
- Random process decides whether or not a collision takes place
- If it occurs the collision is calculated deterministically
- Enormous computational effort by simultaneous tracing of all particles is avoided
- Collision model is of iterative nature

Requirements for applicability

- High mass loading
- moderate volumetric concentration (<~ 20%)
- Only binary collisions
 - inter-particle distance >> particle diameter
 - aerodynamic forces dominate
 - not suitable for fluidised beds
 - $\rho_P >> \rho_{Gas}$
- Spherical particles

Algorithm of the collision model (1)

Stochastic particle-particle collision model, algorithm

Algorithm of the collision model (2)

Stochastic particle-particle collision model, algorithm

Algorithm of the collision model (3)

Instantaneous velocity of the virtual particle P2

- Velocity of P2 comprises:
 - a mean part from the local average values
 - a fluctuating part including a correlation term between the two particles due to Sommerfeld [3,4] and a random term

$$v'_{2,i} = R(\operatorname{St}_t) v'_{1,i} + \sigma_{P,i} \sqrt{1 - R(\operatorname{St}_t)^2} \xi$$

correlation function is determined by LES of a homogeneous isotropic turbulence field

$$R\left(\mathrm{St}_{t}\right) = \exp\left(-0.55\,\mathrm{St}_{t}^{0.4}\right)$$

- Angular velocity of the particle is calculated the same way
 - no correlation between particles

Instantaneous velocity of the virtual collision partner

Collision frequency, probability and time step

- Collision frequency depends on:
 - particle number density n_P
 - diameters of real and fictitious particle
 - instantaneous velocities of both particles

$$f_c = \frac{\pi}{4} \left(d_{P1} + d_{P2} \right)^2 \left| \vec{v_1} - \vec{v_2} \right| \, n_P$$

• Collision probability \rightarrow function of collision frequency and time step

$$P_c = 1 - \exp\left(-f_c \,\Delta t\right)$$

- decision by means of a uniformly distributed random number
- Lagrangian time step \rightarrow limited for stability and accuracy reasons

$$\Delta t \le 0.05 \, \frac{1}{f_c}$$

Collision frequency, collision probability and time step

Universität 🚱 München

Faculty of Aerospace Engineering Thermodynamics Institute Prof. Dr. rer. nat. M. Pfitzner, Prof. Dr.-Ing. Ch. Mundt

Position of the collision partner

- Stochastic determination
- Probability equally distributed over cross section

Deterministic calculation of the collision

- Distinction between sliding and non-sliding collision
- Determination of transferred momentum

Position of the virtual collision partner and calculation of the collision

Implementation in ANSYS CFX

- User Fortran subroutine in FORTRAN 77
- Link to the CFX solver by an interface provided by ANSYS
- Four-way coupling is made available for gas-solid flows
- The model is contained in the next version of CFX (11, Beta-status)

Current limitation

- No particle rotational motion
- Simplified particle-wall collision treatment
- If this aspect is improved in future \rightarrow inter-particle collision model will account for angular velocities

Universität

Faculty of Aerospace Engineering Thermodynamics Institute Prof. Dr. rer. nat. M. Pfitzner, Prof. Dr.-Ing. Ch. Mundt

Validation by experiment of Fohanno & Oesterlé [6]

- Experiment was arranged exactly for this purpose
- Enforced crossing of trajectories
- Flow induced by gravitation
- Glass particles, d_P = 3 mm
- $\rho_P = 2500 \text{ kg/m}^3$
- Collision effects dominate

Description of the validation experiment

Comparison of particle trajectories:

Comparison of particle number density (with collision model):

small mass flow rate, $\alpha = 6.5 \cdot 10^{-4}$

large mass flow rate, $\alpha = 1.9 \cdot 10^{-3}$

- 3 measuring planes
- Particle streak velocimetry (2D optical method)

Particle number density at small / large particle mass flow rate

Grid refinement study and Lagrangian time step

- Coarse grid: 10500 elements, 30000 trajectories
- Fine grid: 620000 elements, 480000 trajectories
- Lagrangian time step depends on grid refinement
- Accuracy of variable fields is improved
- For equally good statistic → number of trajectories quadratic in number of elements

Study of grid refinement and Lagrangian time step

Plane A

Plane B

Plane C

Measurement error and concentration profiles

- Estimated measuring error:
 - 10-13% for mean values
 - 15-20% for standard deviations
- Particle concentration profiles from measurement & simulation:
 - for small and large mass flow rate
 - main source of error: inaccurate particle-wall treatment

Comparison of results: experiment and simulation – concentration profiles ¹⁷

Particle axial mean velocity profiles

- Reason for deviations:
 - Favourable downward flow of air in the simulation
 - \rightarrow reduction of drag and faster downstream of particles
 - Inadequate particle-wall collision treatment

Comparison of results: axial mean velocity profiles of particles

Plane A Plane B

Plane C

Particle velocity standard deviation in transverse direction

- Deviation in plane A not allegeable by inaccurate particle-wall collision treatment
 - intense air turbulence or
 - non-uniform particle supply \rightarrow explanation but improbable
 - \rightarrow likely caused by measurement errors
- Differences in planes B and $C \rightarrow$ lower trajectory crossing point
- Fluctuations decrease with increasing mass flow rate

Comparison of results: velocity standard deviation in transverse direction ¹⁹

Particle absolute velocity in plane of visualisation

- Almost no decrease of absolute velocity in simulation
- Noticeable decline in experiments
 - 3D effects of inter-particle collisions
 - dissipation effects due to inelastic collisions
 - conversion of translational in rotational energy (most probable)
 - dependent on collision frequency

Plane A Plane B Plane C

Comparison of results: absolute velocity in plane of visualisation

20

Scatter plot of particle velocity fluctuations (exp.)

der Bundeswehr

Universität 🚱 München

- Plane A: 2 types of trajectories:
 - vertically falling: $\rightarrow 2^{nd}$ quadrant
 - oblique rebounding from wall: $\rightarrow 4^{th}$ quadrant
- Panes B & C: 3 types of trajectories, symmetry:
 - vertically falling:
- → centre
 - rebounding from both walls: \rightarrow off-centre
- Plane C: considerable scatter
 - homogenisation of particle flow due to collisions

Experimental results: particle velocity fluctuations, small mass flow rate ²¹

Scatter plot of particle velocity fluctuations (exp. & sim.)

Comparison of results: scatter plots of particle velocity fluctuations

Summary and advisable extensions (1)

- Application of a collision model for highly loaded dispersed gasparticle flows is indispensable
- Qualitatively correct prediction of
 - particle velocity profiles
 - homogenisation of the particle flow
 - attenuation of velocity fluctuations
 - influence of the mass flow rate
- Deviations due to
 - insufficiently accurate particle-wall collision modelling
 - no particle rotation
 - no rotation induced lift force (Magnus-effect)
 - no shear induced lift force (Saffman-force)

Summary and advisable extensions (2)

- Comparison with simulations by Pachler [7] of the same experiment including particle rotation shows a slight improvement of the results
- Better predictability [7] with model extension by Sommerfeld [3]
- In flows dominated by particle-wall collisions, particle rotation should be included, as the 3 other validation cases accomplished suggest
- Providing of detailed results in scope of engineering accuracy
- Distinct advancement without enhancing the effort considerably

Stochastic particle-particle collision model

- Model was derived by Oesterlé & Petitjean [1,2]
- Extension to consideration of correlated particle motions by Sommerfeld [3,4]
- Detailed formulation by Frank [5]

[1] Oesterlé, B. and A. Petitjean: Simulation of particle-to-particle interactions in gas-solid flows.
 In: Proceeding of The International Conference on Multiphase Flows, Tsukuba, Japan, September 24-27 1991.
 [2] Oesterlé, B. and A. Petitjean: Simulation of particle-to-particle interactions in gas-solid flows.
 Int. J. of Multiphase Flow, 19(1):199-211, 1993.
 [3] Sommerfeld, M.: Modellierung und numerische Berechnung von partikelbeladenen Strömungen mit Hilfe des Euler-Lagrange-Verfahrens.
 Shaker Verlag, Aachen, 1996. Universität Erlangen/Nürnberg, Habilitation thesis.
 [4] Sommerfeld, M.: Validation of a stochastic Lagrangian modelling approach for inter-particle collisions in homogeneous isotropic turbulence.
 Int. J. of Multiphase Flow, 27:1829-1858, 2001.
 [5] Frank, Th.: Parallele Algorithmen für die numerische Simulation dreidimensionaler, disperser Mehrphasenströmungen und deren Anwendungen in der Verfahrenstechnik. Shaker-Verlag, Aachen, 2002. Chemnitz University of Technology, Habilitation thesis.
 [6] Fohanno S. & B. Oesterlé: Analysis of the effect of collisions on the gravitational motion of large particles in a vertical duct.
 Int. J. of Multiphase Flow, 26:267-292, 2000
 [7] Pachler, K.: Parallele Berechnung 3-dimensionaler, instationärer Gas-Partikel-Strömungen unter Berücksichtigung von Kollisionen und Aggregatzustandsänderungen.
 Shaker Verlag, Aachen, 2004. Technische Universität Chemnitz, Dissertation.

Stochastic particle-particle collision model, literature

Universität

Faculty of Aerospace Engineering Thermodynamics Institute Prof. Dr. rer. nat. M. Pfitzner, Prof. Dr.-Ing. Ch. Mundt

Further test cases

- Test case 2: Vertical pipe flow by Tsuji et al. [8]
- Test case 3: Rectangular particle laden jet flow by Sommerfeld [9]
- Test case 4: Swirling particle laden flow by Zhou et al. [10]

[8] Tsuji, Y., Morikawa Y. and H. Shiomi: *LDV measurements of an air-solid two-phase flow in a vertical pipe*. Journal of Fluid Mechanics, 139:417-434, 1984.
[9] Sommerfeld, M.: *Particle dispersion in turbulent flow: the effect of particle size distribution*. Particle and Particle Systems Characterization, 7:209-220, 1990
[10] Zhou, L.X., Y. Li, T. Chen and Y. Xu: *Studies of the effect of swirl numbers on strongly swirling turbulent gas-particle flows using a phase-Doppler particle anemometer*. Powder Technology, 112:79-86, 2000

Further test cases for validation