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Complex phenomena in gas-liquid flows

Flow Regimes

• Finely dispersed flow (121)

• Bubbly flow

– Wall void maximum (039)

– Transition region (083)

– Core void maximum (118)

– bimodal maximum (129)

• Slug flow (140)

• Annular flow (215)

Features

• Multiple morphology and length
scales

• Inhomogeneous motions

• Breakup and coalescence

• Flow regime transition
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Modeling industrial poly-dispersed flows

• Prefer Eulerian approach: high concentration, large scale

• Need multi-fluid models for inhomogeneous motion of

particles:

– diverse interfacial interaction depending on dp

– multiple length, time, and velocity scales,

τp =
4
3

ρp

ρf

dp

CD |Up−Uf |
, |Up − Uf |

• Bubble size distribution is a major operating parameter

of the system hydrodynamics, e.g., flow pattern, trans-

port and mixing. ���
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• The breakup and coalescence model is important for predicting the bub-

ble size distribution, flow development and regime transition.

• The population balance method is a suitable tool for this purpose.

• Motivation: to develop an efficient multi-fluid based population balan-

ce model for industrial poly-dispersed flow simulation.
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Multi-fluid modeling (1)

Phase indicator function

Xk(x, t; i) =







1 if x occupied by phase k in realization i

0 otherwise

Averaging operators

ensemble average f̄(x,t)=
∫

E f(x,t;µ) dm(µ) = limN→∞

∑N
i=1 f(x,t;i)

N

phase-weighted average f̄k(x,t)=
f Xk
Xk

= limN→∞

∑N
i=1 f(x,t;i)Xk(x,t;i)
∑N

i=1 Xk(x,t;i)

Averaged variables

“volume fraction” rk = Xk

phase-weighted density ρk=
ρ Xk
rk

Favré-averaged transport variables φk =
ρ Xk φ

ρ Xk
=

ρ Xk φ

ρk rk
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Multi-fluid modeling (2)

• Governing equations established from averaging, Xk (instant eqs.) :

∂

∂t
(ρkrk) +∇ · (ρkrkUk) = Srk ,

N∑

k=1

rk = 1

∂

∂t
(ρkrkUk) +∇ · (ρkrkUkUk) = −rk∇P −∇ · (rkΠ

k) + Fk + Ik + SUk

• Need closure models for interfacial momentum transfer:

Ik = FD︸︷︷︸

drag force

+ FL︸︷︷︸

lift force

+ FW︸︷︷︸

wall force

+ FVM︸ ︷︷ ︸

virtual mass

+ FTD︸ ︷︷ ︸

turbulent dispersion

• Population balance model for coalescence and breakup:

– discretisation of the dispersed phase into NS size groups, rd,i (i = 1..NS)

∂

∂t
(ρd rd,i) +∇ · (ρd rd,i Ui) = BB,i − DB,i +BC,i − DC,i

5



Models available in the literature (1)

The N +1 or N × 1 model

• The full multi-fluid model:

Phase Variables

Continuous phase r`, U`, V`, W`, P

Dispersed phase size group i rd,i, Ud,i, Vd,i, Wd,i, (i = 1..NS)

• Constraint equation: r` +
∑N

i rd,i = 1

• Taking the full flow inhomogeneity into account

• Solving 4× (NS +1)+1 eqs. (laminar case), computationally expen-

sive.

• refer to

Carrica et al., Int J. Multiphase Flow 25:257, 1999;

Tomiyama& Shimada, J. Pressure Vessel Tech, 123:510, 2001.
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Models available in the literature (2)

The CFX homogeneous MUSIG model (Lo, 1996)

• The two-fluid model: one velocity field for the dispersed phase

Phase Variables

Continuous phase r`, U`, V`, W`, P

Dispersed phase rd, Ud, Vd, Wd

Size group i rd,i (i = 1..N)

• Constraint equation: r` + rd = 1 where rd =
∑N

i rd,i

• Solving NS+2×4+1 eqs., allowing a sufficient number of size classes.

• Applies to homogeneous poly-dispersed flows with weak size effect.

• Fails to handle flows with size-dependent inhomogeneities, e.g.,

segregation of different size groups due to opposite interfacial forces,

strongly size-dependent time and velocity scales.
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The multi-field multi-size group (N × M MUSIG) model

The two-velocity group MUSIG model (Shi et al., 2003)

• Dividing bubbles into 2-velocity groups based on

the sign of the life force

• Further size discretisation in each velocity group

• Population balance modeling of mass transfer

between all size groups

• Solving NS +3× 4+ 1 eqs., an efficient model

d < d0 d > d0

The NV -velocity group extension (Zwart, Burns and Montavon, 2003)

• Using NV -velocity groups according to bubble hydrodynamics, e.g.,

interfacial forces, transport velocity, particle response time

• solving NS + (NV + 1) × 4 + 1 eqs., a generalized framework for all

possible class models

8



N × M MUSIG model (2)

• Continuity equations for the velocity and size groups

∂

∂t
(ρm rm) +∇ · (ρm rmUm) =Sm, m = 1 .. NV

∂

∂t

(

ρm rm fm,i

)

+∇ ·
(

ρm rm Um fm,i

)

=Sm,i, i ∈ [N0
m, N1

m] ⊂ [1, NS]

ri = rd fi = rm fm,i, rd =

NV∑

m=1

rm =

NS∑

i=1

ri, rm =

N1
m∑

i=N0
m

ri

r` + rd = 1,

NS∑

i=1

fi = 1,

N1
m∑

i=N0
m

fm,i = 1

• Mass source terms due to breakup and coalescence

Sm,i = Bi,B − Di,B +Bi,C − Di,C, Sm =

N1
m∑

i=N0
m

Sm,i
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N × M MUSIG model (3)

• Mass sources due to breakup and coalescence

Bi,B =ρd rd

∑

j>i

Bji fj

Di,B =ρd rd fi

∑

k<i

Bik

Bi,C =(ρd rd)
2 1

2

∑

j≤i

∑

k≤i

Cjk fj fk

mj +mk

mj mk

Xjk→i

Di,C =(ρd rd)
2
∑

j

Cij fi fj
1

mj

NV∑

i=1

Sm =

NS∑

i=1

Sm,i = 0,

NS∑

i=1

(Bi,B − Di,B) = 0,

NS∑

i=1

(Bi,C − Di,D) = 0
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Implementation and model Evaluation

• The N × M MUSIG model has been implemented in ANSYS CFX10

(Phil Zwart, ANSYS Canada, Waterloo)

• Model evaluation based on measurement data will be presented by

Thomas Frank of ANSYS Germany, Otterfing
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